The Crystal and Molecular Structure of Chloro-(2-methoxycyclo-octa-1,5-dienyl)pyridineplatinum

By C. Panattoni, G. Bombieri, E. Forsellini, and B. Crociani
(Istituto di Chimica Generale and Centro di Strutturistica, Università di Padova, Via Loredan 4, Padova, Italy)
and U. Belluco* \dagger
(Istituto di Chimica Organica e di Chimica Industriale, Universita di Bologna, Italy)

Dimers of the type $[\mathrm{PtLCl}]_{2}[\mathrm{~L}=$ methoxy-cyclo-octa-1,5diene (codOMe) and cyclopentadiene dimer (cpdOMe)] undergo bridge-splitting reactions by treatment with neutral ligands L. ${ }^{1,2}$ A recent X-ray investigation on the chlorobridged dimer $[\mathrm{Pt}(\mathrm{cpdOMe}) \mathrm{Cl}]_{2}$ has shown that the central metal is linked to the organic moiety through both a σ and a π olefinic bond. ${ }^{3}$ The position of the ligand relative to the two 'teeth' of the bidentate ligand was uncertain.

(II)

A crystal structure determination of [Pt (CodOMe) py Cl] was therefore undertaken. The compound crystallizes in the space group $P 2_{1} / c$ with $a=9.84 \pm 0.02, b=18.52 \pm$ $0.04, c:=8.15 \pm 0.02 \AA ; \beta=104^{\circ} \pm 20^{\prime}$ and $Z=4$. A total of 1470 independent reflections were collected with $\mathrm{Cu}-K_{\alpha}$ radiation by the multiple film equi-inclination Weissenberg technique for reciprocal lattice levels $0-8 \mathrm{kl}$. The structure was solved by the heavy-atom method and refined by Fourier and block-diagonal least-squares methods to $R 11 \cdot 1$ for all observed intensities with individual isotropic thermal parameters for all atoms. The molecular configuration is shown in the Figure.

The environment of the platinum atom is essentially square-planar with the chlorine atom trans to the π-olefinic bond and the pyridine trans to the $\mathrm{Pt}-\mathrm{C}(10) \sigma$-bond (structure II). The σ bond-length, $\mathrm{Pt}-\mathrm{C}(10)(2.04 \AA)$, is very close to that found in the dimer $[\mathrm{Pt}(\mathrm{cpdOMe}) \mathrm{Cl}]_{2}{ }^{3}$ and in the dehydrohexamethyl Dewar benzene $\mathrm{Pt}^{\mathrm{II}}$ complex, $\left[\mathrm{Pt}\left(\mathrm{C}_{12} \mathrm{H}_{17}\right) \mathrm{Cl}\right]_{2}{ }^{4}$ This occurs also for the $\mathrm{Pt}-\mathrm{C}(6)$ and $\mathrm{Pt}-\mathrm{C}(7)$ bond distances of the π-olefinic bond ($2 \cdot 16 \AA$).

The far i.r. spectrum of $[\mathrm{Pt}(\mathrm{CodOMe}) \mathrm{py} \mathrm{Cl}]$ is consistent with the structure shown in the Figure. The $v(\mathrm{Pt}-\mathrm{Cl})$ stretch at $300 \mathrm{~cm} .^{-1}$ is very close to $\nu(\mathrm{Pt}-\mathrm{Cl})$ for Cl trans to the ethylene in Zeise's salt $\left(307 \mathrm{~cm} .^{-1}\right) .^{5}$ This similarity is reflected also in the $\mathrm{Pt}-\mathrm{Cl}$ bond distances which are 2.345 and $\mathbf{2 \cdot 4 0} \AA$ respectively. ${ }^{6}$ Owing to the high trans effect of the σ-bonded carbon, the pyridine is easily replaced by other
neutral ligands, such as p-toluidine, triarylphosphine, etc. Although the structure of these reaction products cannot be asesssed with certainty, i.r. data indicate that structure (II)

Figure. Molecular configuration of chloro-(2-methoxycyclo-octa-1,5-dienyl)pyridineplatinum.

Bond distances	
$\mathrm{Pt}-\mathrm{Cl}$	$2 \cdot 345(10)$
$\mathrm{Pt}-\mathrm{N}$	$2 \cdot 16(3)$
$\mathrm{Pt}-\mathrm{C}(6)$	$2 \cdot 17(4)$
$\mathrm{Pt}-\mathrm{C}(7)$	$2 \cdot 16(4)$
$\mathrm{Pt}-\mathrm{C}(10)$	$2 \cdot 04(3)$

Angles	
$\mathrm{Cl}-\mathrm{Pt}-\mathrm{N}$	$87^{\circ}(1)$
$\mathrm{Cl}-\mathrm{Pt}-\mathrm{C}(10)$	$91^{\circ}(1)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{Pt}$	$106^{\circ}(2)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{Pt}$	$107^{\circ}(2)$
$\mathrm{C}(7)-\mathrm{Pt}-\mathrm{C}(6)$	$40^{\circ}(2)$
$\mathrm{Cl}-\mathrm{Pt}-\mathrm{C}(7)$	$162^{\circ}(1)$

is retained for p-toluidine $\left[\nu(\mathrm{Pt}-\mathrm{Cl})=301 \mathrm{~cm} .^{-1}\right]$, whereas structure (I) should be extant for triphenylphosphine $\left[\nu(\mathrm{Pt}-\mathrm{Cl})=274 \mathrm{~cm} .^{-1}\right]$, when the $\mathrm{Pt}-\mathrm{Cl}$ stretching frequency corresponds to that of a chloride in the trans position to a platinum-carbon σ-bond $\left(270-283 \mathrm{~cm}^{-1}\right) .^{7,8}$

This work was supported by a grant from N.A.T.O.
(Received, December 11th, 1968; Com. 1694.)

[^0]${ }^{1}$ J. Chatt, M. L. Vallarino, and M. L. Venanzi, J. Chem. Soc., 1957, 2496, and 3413.
${ }_{2}$ J. K. Stille, R. A. Morgan, D. D. Whitehurst, and J. R. Doyle, J. Amer. Chem. Soc., 1965, 87, 3282.
${ }^{3}$ W. A. Whitla, H. M. Powell, and L. M. Venanzi, Chem. Comm., 1966, 310.
${ }^{4}$ R. Mason, G. B. Robertson, P. O. Whim, B. L. Shaw, and G. Shaw, Chem. Comm., 1968, 868.
${ }^{5}$ M. J. Grogan and K. Nakamoto, J. Amer. Chem. Soc., 1966, 88, 5454.
${ }^{6}$ G. E. Bokii and G. A. Kukina, Kristallografiya, 1957, 2, 395.
${ }^{7}$ D. M. Adams, J. Chatt, J. Gerratt, and A. D. Westland, J. Chem. Soc., 1964, 734.
${ }^{8}$ P. L. Goggin and R. J. Goodfellow, J. Chem. Soc. (A), 1966, 1462.

[^0]: \dagger Present address: as for other authors at Padova.

